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The velocity and acceleration of particles moving in a fluidized
bed are analyzed by means of histograms and random functions.

One of the most important problems connected with
the study of fluidized beds is the creation of a physical
model, i.e., description of the bed by the equations of
mathematical physics. The solution of the problem
chiefly involves a knowledge of the nature of the motion
of the gas in the bed itself and the kinematics and dy-
namics of its particles. The problem of the motion and
interaction of the particles is a typical probality prob-
lem in relation to the primary impulse, the motion of
the gas flow. So far, the ideas of probability theory
have not been used to describe the behavior of the
solid phase in a fluidized bed. The situation is com-
plicated by the fact that attention has been concentrated
on the averaged characteristics of the fluidized bed,
where probability relations are inapplicable. Only when
the local characteristics of the system are investigated
is it possible to analyze the experimental data using the
theory of probability and the theory of random functions.
These local characteristics include the kinematic and
dynamic parameters of motion of the bed particles.

Fluidization begins with displacement of the par-
ticles in a confined space [1], the actual motion of a
particle being a random process. Analysis of the
experimental data obtained by investigating this pro-
cess using probability methods provides new informa-
tion about the characteristics of the physical proces-
ses in the bed and the behavior of the solid phase during
interaction with the gas flow. Naturally, probability
relations can also be used to calculate the average
kinematic characteristics of the particles.

The initial data were taken from a previous study
in which the method of radioactively labeled particles
was employed to investigate a monodisperse bed of
spherical aluminosilicate catalyst [1-3].

The primary parameters were the components of the
particle displacement in the vertical z and horizontal
X, v directions, and time t. The kinematic parameters:
vertical component of absolute particle velocity u,
and radial component ug were calculated by numerical
differentiation.

The experimental data were analyzed in two ways: by
constructing histograms and by applying certain meth-
ods of the theory of random functions [4].

Figure 1 presents two histograms showing the den-
sity functions of the vertical component of the particle
velocity in a monodisperse fluidized bed.

An analysis of the histograms for experiments with
constant particle size and static bed height, but dif-
ferent gas velocities reveals the following points:

1. The density function of the vertical component
of particle velocity is not normal. At a near-critical
gas velocity this function is characterized by positive
asymmetry. s mode lies in the region of negative
velocities; physically this means that the greatest
probability of motion of the particles is downward.
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Fig. 1. Histograms of vertical component of ab-
solute particle velocity uz{mm/sec). Particle
diameter 1.0—~1.2 mm; gas velocity 0.456 m/sec
(2) and 1.152 m/sec (b}; critical gas velocity
0.310 m/sec; static height of bed 136 mm.

Hence we may conclude that the motion of the mass of
particles as a whole obeys the law of conservation of
momentum. From this it follows that a large number
of particles moves slowly downward and a small num-
ber of particles rapidly upward.

2. With increase in gas velocity the density function
of the vertical particle velocity component becomes
bimodal, the ordinate of the "negative™ mode being
greater than that of the "positive" mode. Consequently,
as before, motion downward is more probable than
motion upward. The presence of bimodality indicates
the appearance of a new random influence on the parti-
cle, that is, with increase in gas velocity the exchange
of momentum between the particles due to collisions
increases. Hence we may conclude that from a certain
gas velocity the effect of collisions of the particles on
their behavior is commensurable with the effect of the
gas flow and the force of gravity. Only at gas veloci-
ties sufficiently close to critical is it possible to ne-
glect the particle collision force. ’

3. With increase in gas velocity the "negative”
mode is displaced to the left. In the region of positive
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particle velocities (motion upward) the maximum of
the density function degenerates.

&

Fig. 2. (a) Correlation function R,(3 of the ran-
dom function z(t) and (b) spectral density S(w) of
the random quantities z(t), uz(t), and a,(t). Par-
ticle diameter 1.0—1.2 mm; gas velocity 1.152
m/sec; critical velocity 0.310 m/sec; static
height of bed 136 mm (R in mm?; 7in sec; w

in Hz): 1) for Sy(w); 2) Suglw); 3) Sglw.

4. The mathematical expectation of the investigated
parameter, velocity u, was found to be zero in all
cases of analysis of the experimental data by the his-
togram method. Physically this means that the fluid-
ized bed as a whole, regarded as a macrosystem con-
sisting of moving particles, is stationary.

The dispersion of the distribution of the vertical
particle velocity component increases with increase in
gas velocity. This may be attributed to an increase in
the rate of momentum transfer due to particle colli-
sions.

The density function of the radial component of
particle velocity is closely approximated by a normal
law. Physically this means that radial motion is as-
sociated with the predominant influence on the particle
of random factors, the probability of action of each of
which is small.

Since the density function of the radial component is
normal, whereas the density function of the vertical
component differs sharply from a normal distribution
(asymmetry, bimodality), the action of the gas flow on
the particle, through a random factor, is oriented with
respect to direction.

In analyzing one of the experiments we attempted to
find the correlation of the vertical and radial compo~
nents of particle velocity, which were treated as a
system of two random quantities (u,, up). In the first
approximation it may be assumed that the correlation
is relatively weak, and consequently these two random
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quantities may be regarded as independent. Then the
density function of the two random quantities (u,, uy)
will be equal to the product of the density functions of
each of them {4].

In analyzing the experimental data by the methods of
the theory of random functions we took as the initial
random function z(t), the vertical coordinate vs.
time.

Each experiment was conducted without variation of
the external conditions in time. In the most general
case the particle is acted upon by the following forces:
interaction of particle with gas flow, collisions between
neighboring particles, gravity, buoyant force. The first
two are random quantities, and the probability of their
acting on a particle does not change during the exper-
iment. This makes it possible to treat the random
function z (t) as stationary in the stochastic sense and
ergodic, the latter property enabling the character-
istics of the random function to be calculated from a
single realization.

The correlation function and spectral density (Fig.
2) for one of the experiments were calculated on a
high~speed computer.*

An analysis of the correlation function and spectral
density of the random function z(t) reveals the following
points:

1) The correlation function rapidly falls from its
maximum value, equal to the variance of the random
function z ), to the first zero. Consequently, the mo-
tion of the particle is random, chaotic, and disor-
dered.

2. The correlation function changes sign several
times. Physically this means that there is an element
of periodicity in the random motion of the particle.
Thus, periodicity of motion of the particle has been
proved by a strict mathematical method.

3. While changing sign, the correlation function
tends to zero. This indicates the ergodicity of the ran-
dom function.

The spectral density of the random function z(t) has
two maxima: the first at a frequency w = 0 and the
second at w = w,. A physical explanation of the sig-
nificance of these maxima is given below.

Analysis of the experimental data using the theory
of random functions makes it possible to obtain spec-
tral densities for the vertical components of the ve-
locity and acceleration, which are also treated as
random functions.

In order to obtain the velocity and acceleration
knowing the time dependence of the coordinate, we
apply the differentiation operator. We assume that
this operator corresponds to a stationary linear sys-
tem whose input is z(t) and whose output is uz(t). Then
the amplitude-frequency characteristic of this station-
ary linear system is given by

(v =o.

*E. M. Ruzhnikov was responsible for the program-
ming and computations.
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Consequently, the spectral density at the output of the
linear system

Suyin (@) = D @)* Sun (@) = 0* Sy (@)
Again applying the differentiation operator, we obtain
Say (0) = 0* Suyn (0) = o Syn (o).

Thus, obtaining the spectral density of u, ) and &, (t)
reduces to multiplying the spectral density of z{t) by
w? and w!, respectively.

The graphs of the spectral densities of the random
functions uy(t). a, {t) have a single maximum (Fig. 2b).

As a result of the spectral densities obtained, each
random function z (), u, ), and a,(t) can be represen-
ted in canonical form [4], i.e., in the form of a Fou-
rier series,

(Bl

(Upcoswy t 4 Vi sinw, 1),

a
i
=)

where the series coefficients Uy and Vi are ordinary
random quantities which for the same term of the
series k have the same variance, determined by the
spectral density curve and the mathematical expecta-
tion, namely, zero. Mathematically this means that
there is a possibility of expressing the most probable
coordinate, velocity and acceleration as a function of
time.

Consequently, from an analysis of the spectral
density curves of the random functions z(t), u, {t}, and
a,(t), we can draw the following conclusions (Fig.
2b):

1. Since at w = 0 the spectral density of the random
function z(t) has a maximum, this random function has
as a component the ordinary random quantity

() =U, + E(Uk cos oy t -+ V, sinw, ).

k=1

2. The presence of a second maximum of the spec-
tral density curve of the random function z{) at w = w,
indicates the presence of a carrier {fundamental) fre-
quency of particle oscillation from the distributor grid
to the free surface of the bed.
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3. The existence of maxima on the spectral density
curves of the random functions u,(t) and a,(t) at w =
= w, and w = w; indicates the presence of fundamental
frequencies of variation of particle velocity and acce-
leration.

Thus, the use of stochastic (probability) concepts
and the theory of random functions appears {o be very
promising in relation to fluidization processes. With
their help it is possible not only to reduce the experi-
mental data for purposes of generalization, but also to
obtain new information on the physical phenomena in
fluidized beds. Some of this information cannot be ob-
tained directly from experiment (in our case the quan-
titative effects of particle collisions).

The rationality of the method employed is confirmed
by its successful application in areas related to fluid-
ization (5, 9].
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