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The velocity and acceleration of particles moving in a fluidized 

bed are analyzed by means of histograms and random functions. 

One of the most important problems connected with 
the study of fluidized beds is the creation of a physical 
model, i.e., description of the bed by the equations of 
mathematical physics. The solution of the problem 
chiefly involves a knowledge of the nature of the motion 

of the gas in the bed itself and the kinematics and dy- 
namics of its particles. The problem of the motion and 

interaction of the particles is a typical probality prob- 
lem in relation to the primary impulse, the motion of 
the gas flow. So far, the ideas of probability theory 
have not been used to describe the behavior of the 
solid phase in a fIuidized bed. The situation is com- 
plicated by the fact that attention has been concentrated 
on the averaged characteristics of the fluidized bed, 
where probability relations are inapplicable. Only when 
the local characteristics of the system are investigated 
is it possible to analyze the experimental data using the 

theory of probability and the theory of random functions. 
These local characteristics include the kinematic and 
dynamic parameters of motion of the bed particles. 

Fluidization begins with displacement of the par- 

ticles in a confined space [I], the actual motion of a 
particle being a random process. Analysis of the 
experimental data obtained by investigating this pro- 
cess using probability methods provides new informa- 

tion about the characteristics of the physical proces- 
ses in the bed and the behavior of the solid phase during 
interaction with the gas flow. Naturally, probability 

relations can also be used to calculate the average 
kinematic characteristics of the particles. 

The initial data were taken from a previous study 

in which the method of radioactively labeled particles 
was employed to investigate a monodisperse bed of 

spherical aluminosilicate catalyst [1-3]. 
The primary parameters were the components of the 

particle displacement in the vertical z and horizontal 
x, y directions, and time t. The kinematic parameters: 

vertical component of absolute particle velocity u z 
and radial component u R were calculated by numerical 

differentiation. 
The experimental data were analyzed in two ways: by 

constructing histograms and by applying certain meth- 

ods of the theory of random functions [4]. 
Figure 1 presents two histograms showing the den- 

sity functions of the vertical component of the particle 

velocity in a monodisperse fluidized bed. 
An analysis of the histograms for experiments with 

constant particle size and static bed height, but dif- 

ferent gas velocities reveals the following points: 

1. The dens i ty  function of the ve r t i c a l  component  
of pa r t i c l e  ve loc i ty  is  not no r ma l .  At a n e a r - c r i t i c a l  
gas veloci ty  th is  funct ion is  cha rac t e r i zed  by posi t ive  
a s y m m e t r y .  Its mode l i e s  in the reg ion  of negat ive 
ve loc i t i es ;  phys ica l ly  this  me a ns  that the g rea t e s t  
p robab i l i ty  of mot ion of the p a r t i c l e s  is downward. 
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Fig. i. Histograms of vertical component of ab- 
solute particle velocity uz(mm/sec). Particle 
diameter 1.0-1.2 mm; gas velocity 0.456 m/sec 
(a) and 1.152 m/sec  (b); c r i t i c a l  gas veloci ty 

0.310 m/sec ;  s ta t ic  height of bed 136 ram. 

Hence we may conclude that  the mot ion  of the mass  of 
p a r t i c l e s  as a whole obeys the law of conse rva t ion  of 
momentum.  F r o m  this  it  follows that a l a rge  n u m b e r  
of p a r t i c l e s  moves  slowly downward and a smal l  num-  
be r  of pa r t i c l e s  rap id ly  upward.  

2. With i n c r e a s e  in gas veloci ty  the dens i ty  function 
of the ve r t i ca l  pa r t i c l e  ve loc i ty  component  becomes  
bimodal ,  the ord ina te  of the "negat ive"  mode being 
g r e a t e r  than that of the "posi t ive"  mode.  Consequently,  
as before ,  mot ion  downward is  m o r e  p robab le  than 
mot ion upward.  The p r e s e n c e  of b imodal i ty  ind ica tes  
the appearance  of a new random inf luence on the p a r t i -  
cle, that is, with i n c r e a s e  in gas veloci ty  the exchange 
of m o m e n t u m  between the pa r t i c l e s  due to co l l i s ions  
i n c r e a s e s .  Hence we may conclude that f rom a ce r ta in  
gas veloci ty  the effect of co l l i s ions  of the pa r t i c l e s  on 
the i r  behavior  is c o m m e n s u r a b l e  with the effect of the 
gas flow and the force  of g rav i ty .  Only at gas ve loc i -  
t ies  suff ic ient ly  c lose  to c r i t i c a l  is it  poss ib le  to he-  
glect  the pa r t i c l e  co l l i s ion  force .  

3. With i n c r e a s e  in  gas ve loc i ty  the "negative" 
mode is  d i sp laced  to the left .  In the r eg ion  of pos i t ive  
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p a r t i c l e  v e l o c i t i e s  (motion upward)  the  m a x i m u m  of 
the  dens i t y  funct ion  d e g e n e r a t e s .  
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Fig. 2. (at Correlation function Rz(~ of the ran- 
dom function z(t) and (b) spectral density S(co) of 

the random quantities z(t), uz(t), and az(t). Par- 
ticle diameter 1.0-1.2 ram; gas velocity 1.152 
m/sec; critical velocity 0.310 m/sec; static 

height of bed 136 mm (Rz in mm~; Tin see; co 

in Hz): i) for Sz(co); 2) Suz(W); 3) Saz(co). 

4. The mathematical expectation of the investigated 

parameter, velocity u was found to be zero in all 
cases of analysis of th z experimental data by the his- 

togram method. Physically this means that the fluid- 

ized bed as a whole, regarded as a macrosystem con- 
sisting of moving particles, is stationary. 

The dispersion of the distribution of the vertical 
particle velocity component increases with increase in 
gas velocity. This may be attributed to an increase in 
the rate of momentum transfer due to particle colli- 
sions. 

The density function of the radial component of 
particle velocity is closely approximated by a normal 

law. Physically this means that radial motion is as- 

sociated with the predominant influence on the particle 

of random factors, the probability of action of each of 
which is small. 

Since the density function of the radial component is 
normal, whereas the density function of the vertical 

component differs sharply from a normal distribution 
(asymmetry, bimodality), the action of the gas flow on 

the particle, through a random factor, is oriented with 
respect to direction. 

In analyzing one of the experiments we attempted to 
find the correlation of the vertical and radial compo- 
nents of particle velocity, which were treated as a 

system of two random quantities (u z, UR). In the first 
approximation it may be assumed that the correlation 
is relatively weak, and consequently these two random 

quant i t i es  m a y  be  r e g a r d e d  as  independent .  Then the 
de ns i t y  funct ion of the  two r andom quan t i t i e s  (u z, u R) 
wi l l  be equal  to the  p roduc t  of the dens i ty  funct ions of 
each  of them [4]. 

In ana lyz ing  the e x p e r i m e n t a l  da ta  by the methods  of 
the t h e o r y  of r andom funct ions  we took as  the in i t i a l  
r andom function z(t), the v e r t i c a l  coo rd ina t e  v s  
t ime.  

Each e x p e r i m e n t  was conducted  without  v a r i a t i o n  of 
the  e x t e r n a l  condi t ions  in  t i m e .  In the  mos t  gene ra l  
c a se  the  p a r t i c l e  i s  ac ted  upon by the fol lowing fo r ce s :  
i n t e r a c t i o n  of p a r t i c l e  with gas  flow, c o l l i s i o n s  be tween 
ne ighbor ing  p a r t i c l e s ,  g rav i ty ,  buoyant  fo rce .  The f i r s t  
two a r e  r andom quant i t i es ,  and the  p r o b a b i l i t y  of t h e i r  
ac t ing  on a p a r t i c l e  does  not  change dur ing  the e x p e r -  
imen t .  Th is  m a k e s  i t  p o s s i b l e  to t r e a t  the r andom 
funct ion z (t) as  s t a t i o n a r y  in  the  s t oc ha s t i c  s ense  and 
e rgod ic ,  the l a t t e r  p r o p e r t y  enabl ing the c h a r a c t e r -  
i s t i c s  of the r a n d o m  funct ion to be  ca l cu la t ed  f rom a 
s ingle  r e a l i z a t i o n .  

The c o r r e l a t i o n  funct ion and s p e c t r a l  dens i ty  (Fig. 
2) fo r  one of the  e x p e r i m e n t s  we re  ca l cu l a t ed  on a 
h i g h - s p e e d  compute r .*  

An a n a l y s i s  of the  c o r r e l a t i o n  funct ion and s p e c t r a l  
de ns i t y  of the  r a n d o m  function z (t) r e v e a l s  the  fol lowing 
po in t s :  

1) The c o r r e l a t i o n  funct ion r a p i d l y  f a l l s  f r om i t s  
m a x i m u m  value ,  equal  to  the  v a r i a n c e  of the  r andom 
funct ion z(t),  to  the  f i r s t  z e ro .  Consequent ly ,  the  m o -  
tion of the p a r t i c l e  is  random,  chaot ic ,  and d i s o r -  
de red .  

2. The c o r r e l a t i o n  funct ion changes  s ign s e v e r a l  
t i m e s .  P h y s i c a l l y  th i s  m e a n s  tha t  t h e r e  is  an e l emen t  
of p e r i o d i c i t y  in  the  r andom mot ion  of the p a r t i c l e .  
Thus,  p e r i o d i c i t y  of mot ion  of the  p a r t i c l e  has  been  
p roved  by a s t r i c t  m a t h e m a t i c a l  method.  

3. While  changing sign, the c o r r e l a t i o n  function 
tends to zero. This indicates the ergodicity of the ran- 
dom function. 

The spectral density of the random function z (t) has 
two maxima: the first at a frequency w = 0 and the 

second at co = col" A physical explanation of the sig- 
nificance of these maxima is given below. 

Analysis of the experimental data using the theory 
of random functions makes it possible to obtain spec- 
tral densities for the vertical components of the ve- 

locity and acceleration, which are also treated as 
random functions. 

In order to obtain the velocity and acceleration 
knowing the time dependence of the coordinate, we 
apply the differentiation operator. We assume that 
this operator corresponds to a stationary linear sys- 

tem whose input is z(t) and whose output is uz(t). Then 

the amplitude-frequency characteristic of this station- 
ary linear system is given by 

cD (i ~) : :  ~. 

*E. M. Ruzhnikov was r e s p o n s i b l e  fo r  the p r o g r a m -  
ming and compu ta t ions .  
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Consequently,  the spec t ra l  dens i ty  at the output of the 
l i n e a r  sys t em 

S.W~ (o)  = leo (i ~o)l" S~.~ (~0) = ~o ~ S~ . I  (~o). 

Again applying the d i f fe ren t ia t ion  opera tor ,  we obtain 

S~#~ (o~) = co "~ S , , # ~  (~o) = ~,~ S~.~ (0~) 

Thus, obtaining the spec t ra l  dens i ty  of u z (t) and a z(t) 
r educes  to mul t ip ly ing  the spec t ra l  dens i ty  of z(t) by 
w 2 and w 4, r e spec t ive ly .  

The graphs  of the spec t ra l  dens i t i e s  of the r andom 
funct ions Uz(t ), a z (t) have a s ingle  m a x i m u m  (Fig. 2b). 

As a r e su l t  of the spec t ra l  dens i t i e s  obtained,  each 
random funct ion z(t), Uz(t), and az(t ) can be r e p r e s e n -  
ted in canonical  f o rm [4], i . e . ,  in  the fo rm of a Fou-  
r i e r  s e r i e s ,  

E ( U k  cos t + Vk sin t), (O k O) k 

k=O 

where the series coefficients U k and V k are ordinary 
random quantities which for the same term of the 

series k have the same variance, determined by the 

spectral density curve and the mathematical expecta- 

tion, namely, zero. Mathematically this means that 

the re  is  a poss ib i l i t y  of exp res s ing  the mos t  p robab le  
coordinate,  ve loci ty  and a c c e l e r a t i o n  as  a funct ion of 

t ime.  
Consequently,  f rom an a n a l y s i s  of the spec t ra l  

dens i ty  cu rves  of the r andom funct ions  z(t), u z(t), and 
az(t),  we can draw the following conc lus ions  (Fig. 

2b) : 
1. Since at w = 0 the spec t ra l  dens i ty  of the r andom 

funct ion z (t) has  a max imum,  this  r andom funct ion has  
as a component  the o r d i n a r y  r andom quant i ty  

z (t) = U o + ~ (Uk COS ~% t + Vb sin 0~ t). 

2. The p r e s e n c e  of a second m a x i m u m  of the spec-  
t r a l  dens i ty  curve  of the r a n d o m  funct ion z(t) at w = w 1 
indica tes  the p r e s e n c e  of a c a r r i e r  (fundamental)  f r e -  
quency of pa r t i c l e  osc i l l a t ion  f rom the d i s t r i b u t o r  gr id  
to the f ree  sur face  of the bed. 

3. The ex i s tence  of m a x i m a  on the spec t ra l  dens i ty  
curves  of the r andom funct ions  Uz(t) and az(t)  at w = 
= w 2 and w = w 3 ind ica tes  the p r e s e n c e  of fundamenta l  
f r equenc ies  of va r i a t ion  of pa r t i c l e  ve loc i ty  and acce-  
l e ra t ion .  

Thus, the use  of s tochas t ic  (probabil i ty)  concepts  
and the theory  of random funct ions  appea r s  to be  ve ry  
p r o m i s i n g  in r e l a t ion  to f luidizat ion p r o c e s s e s .  With 
t he i r  help it is poss ib le  not only to reduce  the exper i -  
men ta l  data for pu rposes  of genera l iza t ion ,  but a lso  to 
obtain new in fo rma t ion  on the phys ica l  phenomena in 
f luidized beds.  Some of this  i n fo rma t ion  cannot be ob- 
ta ined d i r ec t ly  f rom expe r imen t  (in our  case  the quan-  
t i ta t ive  effects  of pa r t i c l e  co l l i s ions) .  

The ra t iona l i ty  of the method employed is conf i rmed 
by i ts  success fu l  appl ica t ion  in  a r e a s  re la ted  to f luid-  
i za t ion  [5, 9 ]. 
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